Vol.4 No.3
Summer 1993

J.Sci.1.R. Iran

A COMMUTATIVITY CONDITION FOR RINGS

A.H. Yamini

Amir Kabir University, Hafez Ave., Tehran, Islamic Republic of Iran

Abstract
In this paper, we use the structure theory to prove an analog to a well-known
theorem of Herstein as follows: Let R be a ring with center C such that for all x,y €

R either [x,y]= 0 or x-x" [x,y] € C for some non negative integer n= n(x,y) depending

on x and y. Then R is commutative.

Introduction

Throughout this paper, R represents an associative
ring with center C, and J(R) denotes the Jacobson radi-
cal of R. As usual for x,y € R the commutator xy-yx 1S
denoted by [x,y].

The Jacobson structure theory is one of the most
useful in proving that appropriately conditioned rings
are commutative or anticommutative [1,3]. Using this
theory, Herstein [1] proved the following theorem:

Let R be a ring with center C such that for a fixed
integer n>1, x-x" € C for all x € R then R 1s commu-
tative. This is one of the finest results in ring theory.

The objective of this paper is to prove an analog to
the above- mentioned result. Indeed, we prove the fol-
lowing:

Theorem 1.1. Let R be a ring with center C such
that for a fixed integer n>1 either x-x" [x,y] € C, or
[x,y]= 0 for all x,y eR. Then R is commutative.

Materials and Methods
Preliminary Lemmas
We first establish the following Lemmas for a ring
R satisfying the hypothesis of Theorem 1.1.
Lemma 2.1. If R is a division ring it 1s commuta-
tive.
Proof. First note that,

[x,y] commutes with both x and y, forall x,yeR. (1)

If not, for some x,y € R, [[{x,y],y] #0,hence x# 0,y #
0 and [x,y] # 0. Being in a division ring we deduce
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that

0#x" [[xy], x]=[x" [x)y], x]=-[x-X" [x,y], x],

that is x-x" [x,y] & C; contrary to the hypothesis. Since
R, as a division ring, has no nonzero nil ideal; we can,
at this point, conclude that R 1s commutative by
Herstein [2]. But we will finish the proof of this
Lemma as follows:

Let x,y € R, by (1) we have:

x2y [x,y]= x(xy) [x,y]=x[x,y] xy (2)
But x[x,y]=-x[y.x]= -(xyx-x2y)=-[xy.x], thus by (2),
X%y [x,y]=-[xy.x] xy 3)

By (1), we know that xy commutes with [xy,x], there-
fore (3) implies that

X2y [x,y]=-xy[xyx] (4)

Since [xy.x]= x[y.x]= -x[x,y], hence (4) yields that

X2y [x,y]= xyx{x,y]

that is (x°y-xyx) [x,y]=0, or x[x,y]?=0. At any rate,
since R is a division ring we must have [x,y]/=0. Thus
R 1s commutative.

Lemma 2.2. If R is semisimple it iSs commutative.

Proof. As is well-known, R is a subdirect sum of
rings R. which are primitive. As a homomorphic image
of R, each R, satisfies the hypothesis placed on R.
Thus, to show that R is commutative, it suffices to
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prove that each R. 1s commutative, in other words we
may assume that R 1s primitive. As a primitive ring,
either R = D for some division ring D, or for some k> /
D, 1s a homomorphic image of a subring of R. We
wish to show that this latter possibility does not arise.
It 1t did, then D, , the complete matrix ring over D,
satisfies the hypothesis placed on R. This is cleary
false for the elements

pr— —

1 1.0 01.0
=100..0 Y51 00..0
L0 0... 0 - 00.0

in D, satisfy x*=x, [x,y]=y #0, and x-x" [x,y] & C for
all positive integers n. Thus, R must be a division ring,
hence it 1s commutative by Lemma 2.1. In this way, R
is seen as a subdirect sum of commutative rings and so
it must be commutative.

For general R satisfying the hypothesis of Theorem
1.1, since R/J(R) is semisimple, we have

Corollary. Forall x,y e R, [x,y] € J(R).

Lemma 2.3. (i) If z eC and x € R, then (z"*{-2) x

e (.
() If ze C NJ(R), then z[x,y]=0 tor all x,y € R.

Proof (1). If zx € C, there is nothing to prove. Sup-

pose that [zx,y] # O for some y € R, then from ze C we
deduce that [x,y/#0; and by the hypothesis we have

(zx)-(zx)" [zx,y}e C and x-x" [x,y]eC. (2.1)
Having z € C, (2.1) implies that

(zx) - (2" x™) [x,y] € C and (2" x) - (2 X [x,y]
eC, (2.2)

hence (z"*/-z) x € C.

Proof (i1). Let z € CM J(R) and let x,yeR. By part

(1),

[(z"*-z)x,y]= 0. (2.3)
Since zeC, (2.3) yields that

2" [xy]=z[xy]. (2.4)

On the other hand, from zeJ(R), we get z” € J(R).

Hence, z” 1s a quast-regular element in R. Therefore,

from (2.4) we deduce that z[/x,y/= 0.
Lemma 2.4. For all x,yeR, [x,y] commutes with
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both x and y.
Proof. Since [x,y]= -[y.x], it suffices to show that

[[x,y] x]= 0 for all x,y In R. (2.5)

To prove (2.5), let x,yeR and set
a= [x,y].

Obviously if fa,x]=0 we would be done. Therefore, by
the hypothesis placed on R, we may assume that

a-a” [ax]eC. (2.6)
By the Corollary above a,[a,x]€J(R); hence

a-a" [ax] e CNJ(R). (2.7)
In view of Lemma 2.3 (i1), (2.7) yields that

(a-a" [a,x]) [x,y]=0. (2.8)
Since a= [x,y], from (2.8) we get

a’=a" [ax]a. (2.9)

Having a™ [a,x]a (= [a,x]a, if n=2) in J(R), (2.9)im-
plies that a’°=0. Hence aeC, by (2.6). This proves
(2.5) and completes the proof of this Lemma.

With the above Lemmas established we are able to
complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let x,yeR. If [x,y]=0 we
are done. Therefore, it is enough to show that x-x"
[x,y] €C also implies that [x,y/=0. But having x-x"
[x,y] € C we get

[x-x"[x,y],y]=0.

Since by Lemma 2.4 {x,y] commutes with both x and
y, (2.10) yields that

(2.10)

[x.y]= [X"[x.y].y]= [x.y] [x"y]. (2.11)
But by the Corollary [x",y] €J(R), hence [x"y] is a
quasi-regular element in R. Therefore, from (2.11) we
deduce that [x,y/=0. Theorem 1.1 is now proved.

Results and Discussion

Remark 3.1. Suppose that for all x,y in R either
[x,y]=0 or x-[x,y] € C then R is commutative. Because
if [x,y] #0 for some x,yeR we have x-[x,y]eC and y-
[y, x]eC. This would place x+y in C, hence
O=[x+y,y]= [x,y] contrary to [x,y] #20.

Remark 3.2. Let m be a fixed positive integer such
that for all x,y in R either [x,y]=0 or x-x"[xy]eC.
Suppose that [x,y] #0 for some x,y in R, then x-x"
[x,y] €C and x&C, hence x{x,y] #0 1.e. [xxy] #O.
From [x,xy] #0 we get x-x" [xxy] €C, ie. x-x"*
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[x,y]€C. Continuing in this way it can be shown that

if [x,y] #0 then x-x" [x,y] €C for all integers n=2m.
Since in any stage of the proof of Theorem 1.1 we just
deal with a finite number of elements of R, then In
view of the above remarks from Theorem 1.1 we get

Theorem 3.1. Let R be a ring with center C such
that for all x,yeR either [x,y]=0 or x-x"[x,y]eC for
some non negative integers n=n(x,y) depending on x
and y (for n=0, x" [x,y]= [x,y]). Then R 1s commuta-
tive.

Remark 3.3. If we replace the hypothesis of Theo-
rem 3.1 by
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"x-x" [x,y] €C, for all x,y nR".
Then the theorem would be trivial; because for each x
in R from x-x" [x,x] € C we get xe (.
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